DUCTILE IRON CORE * PVC CLAD * SERVICE TEMP: +35 TO +250 F

SQUARE FEET ON FACE OF THRUST BLOCK "F" TO BE PLACED AGAINST NATIVE SOIL CALULATED AS F sqtt - H $\pi \times W \mathrm{ft}$. DETERMINE TOTAL F IF MULTIPLE PIPE SYSTEMUSING:

SQ. FT REQUIRED EACH PIPE -
PI X ($1 / 1 /$ ID CORE) ${ }^{\wedge} 2 \times$ testPSI X SAFETY FACTOR
HORIZONTAL BEARING CAPACITY OF SOIL(ib/sqt)

Example: A 10^{*} PVC LINE tested at 150 P3I develops about 12 ,000bs of force at each gorting turn. Using a safety factor of 1.5 we should allow for $18,000 \mathrm{lbs}$. of force. With 2 Ines the force developed would be $36,000 \mathrm{lb}$. If your sols were dsturbed fill with an expected bearing capacity of 7501 l /square foot, the concrete block needs a face against the native soll of $36000 / 750$ or about 48 square feet. IE H X W $=48$ sq. t.
This represents a rather large thruas block
to prevent blow out of the gasketed system, assuming a conservative low horizontal bearing capacity for the sibe with disturbed fili characteriatics in the top 10 of a construction ste and no contrbution of jacket firction provided by compacted soll along the plpe run. Other considerations: minimum depth below final elevation, minimum 12^{*} cover of concrete over plpe, "lace" required both sides of block to resist force of plpe each direction.

THURST BLOCK CONSTRUCTION AT 90 QASKET SYSTEM FITTING
THRUST BLOCK SHNL EE INSTALIFD AT NLL TURNS. THRUST ELOCKS SHALL BE CONCRETE HAVINGA COMPRESSNE STRENGTH OF NO LESB THAN 2000 PGI AFTER 28 DAYS. THRUST BLOCK8 BHNL BE PLACED BETWEEN BOLD QROUND AND THE FITTMG TO BE ANCHORED. THE BASE AND THRUST EENRING SIDEB OF THE THRUST BLOCKS SHALL BE ROURED DIRECTLY AOANST UNDIBTUREED ENRTH. THE SIDES OF THE BLOCX NOT SUBIECT TO THRUST MAY BE POURED AQANST FORMS.

THRUST BLOCK DETAIL AND SIZING

